

SPACE TECHNOLOGIES CONSULTING SERVICES (STConsulting)

Training Modules

March 2022

Introduction

TURKSAT STConsulting offers the following training modules about space systems, spacecraft design and satellite communication:

- Introduction to Space Systems and Spacecraft Design (2 weeks course)
- Introduction to Satellite Communications (1 week course)
- ✓ Both courses can be done via online or on-site in Turksat premises
- ✓ Course content can be modified according to your requests and preferences.
- ✓ Limitation for number of trainees for online modules is 12. For on-site modules number of trainees is limited up to 8.
- ✓ Also , customized training modules such as In orbit testing can be organized upon request.

Instructors Profiles

- ✓ Courses are given in English (or Turkish if requested) by TURKSAT AS instructors.
- ✓ These instructors have been involved in many satellite projects as follows;
 - Türksat 3A, Türksat 4A/4B, Türksat 5A/5B, Türksat 3USAT and Türksat 6A
 - The establishment of the Space Systems Integration Test (USET) center for GÖKTÜRK-1 Project
- ✓ They have history of working with leading international spacecraft manufacturer companies such as Thales Alenia Space, Mitsubishi Electric, and Airbus Defense and Space.
- ✓ Also, participated launch activities with ILS Launch, SpaceX, and Ariane.

Price of training modules

- > Introduction to Space Systems and Spacecraft Design (2 week course)
 - Online or on-site* (in Turkey) Training
- Introduction to Satellite Communications (1 week course)
 - Online or on-site* (in Turkey) Training

* On-site in Turkey module does not consist of any travel or accommodation expense of trainees. If requested this can be organized separately.

Syllabus of Training Modules

Titl	Day	
***	Overview	1
***	Space Missions and Systems	1
***	Satellite Design	5
•	Development & Validation	2
***	Trends & Future Missions	0.5
**	AIT Visit (if done in Turkey)	0.5

Introduction to Space Systems and Spacecraft Design

Introduction to Satellite Communication

Tit	Day	
***	Introduction	0,5
*	Satellite Communications Market And Systems	0,5
***	Introduction to Digital Communication	0,5
**	Link Budget	0,5
**	RF Architecture	1,5
*	Antennas	0,5
*	Validation, IOT	0,5
↔ *Vis	Question & Answer Session*, Quiz it to Turksat premises can be arranged separate	0,5

Demo Presentations

Module: Introduction to Space Systems and Spacecraft Design

Section:

Satellite Design

Subsection: Thermal Control Systems

Presented by:

Structrural and Thermal Subsystem

Türksat Satellite Programs Department

Agenda

Introduction

Thermal Environment Requirement and Design Constraints Basic Principles Thermal Control System Design Thermal Development Plan Thermal Analysis and Model Thermal Vacuum Test

Introduction

The purpose of a Thermal Control System (TCS) is to maintain all spacecraft's components within the allowable temperature limit for all modes of the spacecraft in all thermal environments.

Main objectives of the thermal control system are:

- To maintain equipment temperature in specified ranges (usually room temperature) in order to guarantee their performances during all mission life.
- To guarantee optimum performances when equipment is operating.
- To avoid damage when equipment is not operating.
- To keep the specified temperature stability for delicate electronics, or stable optical components.

Requirements and Design Constraints

These requirements are achieved with passive and active thermal control hardware

Thermal Analysis and Model

Module:

Introduction to Satellite Communications

Section:

Antennas

Presented by: Payload Subsystem and TCR Group

Agenda

General Points

Fundamental Concepts Design Constraints Reflector Antennas Active Antennas Feed Horns Antenna RF Design Tools Radomes-Sunshields

Gain and Directivity

The **gain (G)** of an antenna in a given direction is the ratio of the radiation intensity to the average radiation intensity over the radiation sphere if all accepted power is radiated isotropically.

Basically gain of a practical antenna is the ratio of radiated power per unit solid angle in the direction called «u» to the power radiated per unit solid angle by an isotropic antenna powered with the same power.

Half Power Beam width

Radiation Pattern

Iso level contour radiation pattern

Reflector Antennas

The role of a 'reflector' is to reflect the wave coming from the feed(transmit antenna or from space for a receive antenna) and modifying the structure of this wave:

a parabolic reflector transforms the spherical wave coming from the feed into a planar wave front in proximity to the reflector (inverse operation in reception).

a hyperbolic/ellipsoid reflector transforms the spherical wave coming from one of its foci into a spherical wave appearing to emerge from the second focus (Cassegrain/Gregorian antenna).

For more detailed info, please contact us:

stconsulting@turksat.com.tr

Türksat Uydu Haberleşme Kablo TV ve İşletme A.Ş.

Satellite Programs Department

Bahçelievler Mah. 319 Cd. Ankara Teknopark Biyosavunma Binası Kat 2 Gölbaşı/Ankara

F +90 (312) 925 29 00 T +90 (312) 925 30 00 stconsulting@turksat.com.tr uydu.turksat.com.tr

ANNEX-1

Detailed Syllabus of Training Modules

1. Introduction to Space Systems and Spacecraft Design (1/3)

Title		Day	
***	Overview		1
		Introduction	
		Historical Perspective	
	•	Space Industry Overview	
	•	Space Missions and Orbits	
***	Spac	e Missions and Systems	1
		The different types of missions and	
		systems	
		Orbits	
		Systems	
		Space Environment, Radiation Analysis	
•	Sate	llite Design	5
		Spacecraft System Design,	
		Reliability/Redundancy	
		Structure and Material & Mechanism	
		Thermal Control System	

1. Introduction to Space Systems and Spacecraft Design (2/3)

Title		Day
	Propulsion System	
	Launcher and Interface with Satellite	
	Attitude Orbit and Control System	
	Electrical Power System	
1	Electromagnetic interference/compatibility	
	Satellite Management, On Board Data Handling, FDIR	
	RAMS (System Dependability)	
	Payload Missions and Types	
	Payload Design and Components	
	Telemetry/Telecommand/Ranging (TCR)	
	CMC, SLCC, museum visit	
* Deve	lopment & Validation	1
	Project & Development Phases	
	AIV/AIT	
	Quality Assurance & Product Assurance	
	Requirement Management & Configuration Management	

1. Introduction to Space Systems and Spacecraft Design (3/3)

Title	
 Trends & Future Missions 	1
Examples of Spacecraft Design	
 Trends for the Future (Satellites and Missions, Subsystems) 	
* AIT Visit	1

2. Introduction to Satellite Communications (1/5)

Title			Day
•	Intro	duction	0,5
		Satellite Types	
		 Mission 	
		• Orbit Etc.	
		Geostationary Satellites	
		LEO Satellites	
		Ground Stations	
		Payload Types	
		 Bent-pipe Payload 	
		 Digital Payload 	
		 Flexible Payload 	
		New Generation Satellites	
		Fundamentals Components Of Satellite Communication	

2. Introduction to Satellite Communications (2/5)

Title			Day	
 Satellite Communications Market And System Factors 				
		Applications Of Satellite Communication		
		• Data Communication		
		• Broadcasting		
		o VSAT		
	•	Frequency Bands		
		Payload Types		
		ITU Regulation		
		Terminal Types		
		Flexible Payload		
		Earth Station Design		

2. Introduction to Satellite Communications (3/5)

Title			Day	
***	Intro	ductio	on to Digital Communication	0,5
		Intro	oduction	
		Sour	ce/Channel Coding	
		Mod	lulation/Demodulation	
		Digit	al Filtering	
	•	DVB	Standards	
	•	Link	Parameters	
		0	Bit Rate	
		0	BER	
		0	Bandwidth	
		0	SNR	

2. Introduction to Satellite Communications (4/5)

Title			
***	Link Budget		
***	RF Architecture	1,5	
	 System concept 		
	 Earth Station/User Terminal 		
	Satellite Payload		
	 General Payload Architecture 		
	 Input Section 		
	 Amplificaiton 		
	 Output Section 		
	 Subconnectors 		
	• OBP		

2. Introduction to Satellite Communications (5/5)

Title			
•	Antennas		
	 General Points 		
	Fundamental Concepts		
	Design Constraints		
	 Reflector Antennas 		
	 Active Antennas 		
	Feed Horns		
	 Antenna RF Design Tools 		
	Radomes&Sunshields		
	 Technology for reflector and structure 		
•	Validation	0,5	
	 Ground tests 		
	 Compact antenna tests 		
	In Orbit Tests		
***	Question and answer session, Quiz	0,5	

ANNEX-2

AIT Center and Türksat Museum

AIT Center

Türksat Museum

Turksat Museum

ANNEX-3

Auxiliary Materials for Training Modules

